(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
plus(0, x) → x
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(x), y) → plus(y, times(x, y))
p(s(x)) → x
p(0) → 0
minus(x, 0) → x
minus(0, x) → 0
minus(x, s(y)) → p(minus(x, y))
isZero(0) → true
isZero(s(x)) → false
facIter(x, y) → if(isZero(x), minus(x, s(0)), y, times(y, x))
if(true, x, y, z) → y
if(false, x, y, z) → facIter(x, z)
factorial(x) → facIter(x, s(0))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
plus(s(x), y) →+ s(plus(x, y))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / s(x)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
plus(0', x) → x
plus(s(x), y) → s(plus(x, y))
times(0', y) → 0'
times(s(x), y) → plus(y, times(x, y))
p(s(x)) → x
p(0') → 0'
minus(x, 0') → x
minus(0', x) → 0'
minus(x, s(y)) → p(minus(x, y))
isZero(0') → true
isZero(s(x)) → false
facIter(x, y) → if(isZero(x), minus(x, s(0')), y, times(y, x))
if(true, x, y, z) → y
if(false, x, y, z) → facIter(x, z)
factorial(x) → facIter(x, s(0'))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
plus(0', x) → x
plus(s(x), y) → s(plus(x, y))
times(0', y) → 0'
times(s(x), y) → plus(y, times(x, y))
p(s(x)) → x
p(0') → 0'
minus(x, 0') → x
minus(0', x) → 0'
minus(x, s(y)) → p(minus(x, y))
isZero(0') → true
isZero(s(x)) → false
facIter(x, y) → if(isZero(x), minus(x, s(0')), y, times(y, x))
if(true, x, y, z) → y
if(false, x, y, z) → facIter(x, z)
factorial(x) → facIter(x, s(0'))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
minus :: 0':s → 0':s → 0':s
isZero :: 0':s → true:false
true :: true:false
false :: true:false
facIter :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s → 0':s
factorial :: 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
plus,
times,
minus,
facIterThey will be analysed ascendingly in the following order:
plus < times
times < facIter
minus < facIter
(8) Obligation:
TRS:
Rules:
plus(
0',
x) →
xplus(
s(
x),
y) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
s(
x),
y) →
plus(
y,
times(
x,
y))
p(
s(
x)) →
xp(
0') →
0'minus(
x,
0') →
xminus(
0',
x) →
0'minus(
x,
s(
y)) →
p(
minus(
x,
y))
isZero(
0') →
trueisZero(
s(
x)) →
falsefacIter(
x,
y) →
if(
isZero(
x),
minus(
x,
s(
0')),
y,
times(
y,
x))
if(
true,
x,
y,
z) →
yif(
false,
x,
y,
z) →
facIter(
x,
z)
factorial(
x) →
facIter(
x,
s(
0'))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
minus :: 0':s → 0':s → 0':s
isZero :: 0':s → true:false
true :: true:false
false :: true:false
facIter :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s → 0':s
factorial :: 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
plus, times, minus, facIter
They will be analysed ascendingly in the following order:
plus < times
times < facIter
minus < facIter
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
plus(
gen_0':s3_0(
n5_0),
gen_0':s3_0(
b)) →
gen_0':s3_0(
+(
n5_0,
b)), rt ∈ Ω(1 + n5
0)
Induction Base:
plus(gen_0':s3_0(0), gen_0':s3_0(b)) →RΩ(1)
gen_0':s3_0(b)
Induction Step:
plus(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(b)) →RΩ(1)
s(plus(gen_0':s3_0(n5_0), gen_0':s3_0(b))) →IH
s(gen_0':s3_0(+(b, c6_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
plus(
0',
x) →
xplus(
s(
x),
y) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
s(
x),
y) →
plus(
y,
times(
x,
y))
p(
s(
x)) →
xp(
0') →
0'minus(
x,
0') →
xminus(
0',
x) →
0'minus(
x,
s(
y)) →
p(
minus(
x,
y))
isZero(
0') →
trueisZero(
s(
x)) →
falsefacIter(
x,
y) →
if(
isZero(
x),
minus(
x,
s(
0')),
y,
times(
y,
x))
if(
true,
x,
y,
z) →
yif(
false,
x,
y,
z) →
facIter(
x,
z)
factorial(
x) →
facIter(
x,
s(
0'))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
minus :: 0':s → 0':s → 0':s
isZero :: 0':s → true:false
true :: true:false
false :: true:false
facIter :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s → 0':s
factorial :: 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
times, minus, facIter
They will be analysed ascendingly in the following order:
times < facIter
minus < facIter
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
times(
gen_0':s3_0(
n602_0),
gen_0':s3_0(
b)) →
gen_0':s3_0(
*(
n602_0,
b)), rt ∈ Ω(1 + b·n602
0 + n602
0)
Induction Base:
times(gen_0':s3_0(0), gen_0':s3_0(b)) →RΩ(1)
0'
Induction Step:
times(gen_0':s3_0(+(n602_0, 1)), gen_0':s3_0(b)) →RΩ(1)
plus(gen_0':s3_0(b), times(gen_0':s3_0(n602_0), gen_0':s3_0(b))) →IH
plus(gen_0':s3_0(b), gen_0':s3_0(*(c603_0, b))) →LΩ(1 + b)
gen_0':s3_0(+(b, *(n602_0, b)))
We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).
(13) Complex Obligation (BEST)
(14) Obligation:
TRS:
Rules:
plus(
0',
x) →
xplus(
s(
x),
y) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
s(
x),
y) →
plus(
y,
times(
x,
y))
p(
s(
x)) →
xp(
0') →
0'minus(
x,
0') →
xminus(
0',
x) →
0'minus(
x,
s(
y)) →
p(
minus(
x,
y))
isZero(
0') →
trueisZero(
s(
x)) →
falsefacIter(
x,
y) →
if(
isZero(
x),
minus(
x,
s(
0')),
y,
times(
y,
x))
if(
true,
x,
y,
z) →
yif(
false,
x,
y,
z) →
facIter(
x,
z)
factorial(
x) →
facIter(
x,
s(
0'))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
minus :: 0':s → 0':s → 0':s
isZero :: 0':s → true:false
true :: true:false
false :: true:false
facIter :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s → 0':s
factorial :: 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
times(gen_0':s3_0(n602_0), gen_0':s3_0(b)) → gen_0':s3_0(*(n602_0, b)), rt ∈ Ω(1 + b·n6020 + n6020)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
minus, facIter
They will be analysed ascendingly in the following order:
minus < facIter
(15) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol minus.
(16) Obligation:
TRS:
Rules:
plus(
0',
x) →
xplus(
s(
x),
y) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
s(
x),
y) →
plus(
y,
times(
x,
y))
p(
s(
x)) →
xp(
0') →
0'minus(
x,
0') →
xminus(
0',
x) →
0'minus(
x,
s(
y)) →
p(
minus(
x,
y))
isZero(
0') →
trueisZero(
s(
x)) →
falsefacIter(
x,
y) →
if(
isZero(
x),
minus(
x,
s(
0')),
y,
times(
y,
x))
if(
true,
x,
y,
z) →
yif(
false,
x,
y,
z) →
facIter(
x,
z)
factorial(
x) →
facIter(
x,
s(
0'))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
minus :: 0':s → 0':s → 0':s
isZero :: 0':s → true:false
true :: true:false
false :: true:false
facIter :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s → 0':s
factorial :: 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
times(gen_0':s3_0(n602_0), gen_0':s3_0(b)) → gen_0':s3_0(*(n602_0, b)), rt ∈ Ω(1 + b·n6020 + n6020)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
facIter
(17) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol facIter.
(18) Obligation:
TRS:
Rules:
plus(
0',
x) →
xplus(
s(
x),
y) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
s(
x),
y) →
plus(
y,
times(
x,
y))
p(
s(
x)) →
xp(
0') →
0'minus(
x,
0') →
xminus(
0',
x) →
0'minus(
x,
s(
y)) →
p(
minus(
x,
y))
isZero(
0') →
trueisZero(
s(
x)) →
falsefacIter(
x,
y) →
if(
isZero(
x),
minus(
x,
s(
0')),
y,
times(
y,
x))
if(
true,
x,
y,
z) →
yif(
false,
x,
y,
z) →
facIter(
x,
z)
factorial(
x) →
facIter(
x,
s(
0'))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
minus :: 0':s → 0':s → 0':s
isZero :: 0':s → true:false
true :: true:false
false :: true:false
facIter :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s → 0':s
factorial :: 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
times(gen_0':s3_0(n602_0), gen_0':s3_0(b)) → gen_0':s3_0(*(n602_0, b)), rt ∈ Ω(1 + b·n6020 + n6020)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(19) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
times(gen_0':s3_0(n602_0), gen_0':s3_0(b)) → gen_0':s3_0(*(n602_0, b)), rt ∈ Ω(1 + b·n6020 + n6020)
(20) BOUNDS(n^2, INF)
(21) Obligation:
TRS:
Rules:
plus(
0',
x) →
xplus(
s(
x),
y) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
s(
x),
y) →
plus(
y,
times(
x,
y))
p(
s(
x)) →
xp(
0') →
0'minus(
x,
0') →
xminus(
0',
x) →
0'minus(
x,
s(
y)) →
p(
minus(
x,
y))
isZero(
0') →
trueisZero(
s(
x)) →
falsefacIter(
x,
y) →
if(
isZero(
x),
minus(
x,
s(
0')),
y,
times(
y,
x))
if(
true,
x,
y,
z) →
yif(
false,
x,
y,
z) →
facIter(
x,
z)
factorial(
x) →
facIter(
x,
s(
0'))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
minus :: 0':s → 0':s → 0':s
isZero :: 0':s → true:false
true :: true:false
false :: true:false
facIter :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s → 0':s
factorial :: 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
times(gen_0':s3_0(n602_0), gen_0':s3_0(b)) → gen_0':s3_0(*(n602_0, b)), rt ∈ Ω(1 + b·n6020 + n6020)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(22) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
times(gen_0':s3_0(n602_0), gen_0':s3_0(b)) → gen_0':s3_0(*(n602_0, b)), rt ∈ Ω(1 + b·n6020 + n6020)
(23) BOUNDS(n^2, INF)
(24) Obligation:
TRS:
Rules:
plus(
0',
x) →
xplus(
s(
x),
y) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
s(
x),
y) →
plus(
y,
times(
x,
y))
p(
s(
x)) →
xp(
0') →
0'minus(
x,
0') →
xminus(
0',
x) →
0'minus(
x,
s(
y)) →
p(
minus(
x,
y))
isZero(
0') →
trueisZero(
s(
x)) →
falsefacIter(
x,
y) →
if(
isZero(
x),
minus(
x,
s(
0')),
y,
times(
y,
x))
if(
true,
x,
y,
z) →
yif(
false,
x,
y,
z) →
facIter(
x,
z)
factorial(
x) →
facIter(
x,
s(
0'))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
minus :: 0':s → 0':s → 0':s
isZero :: 0':s → true:false
true :: true:false
false :: true:false
facIter :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s → 0':s
factorial :: 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(25) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
plus(gen_0':s3_0(n5_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
(26) BOUNDS(n^1, INF)